sábado, 26 de julho de 2014

Proteção ANTI CHAMAS Estruturas Metálicas (11)98950-3543

Proteção ANTI CHAMAS Estruturas Metálicas (11)98950-3543

Introdução

Os projetos estruturais que tratam da resistência ao fogo são baseados no fato de que as altas temperaturas decorrentes de um incêndio reduzem a resistência mecânica e a rigidez dos elementos estruturais da edificação, e, adicionalmente, promovem expansões térmicas diferenciais, podendo levar a estrutura ao colapso.

Neste sentido, pode-se considerar que as preocupações se segurança contra incêndio em uma edificação se referem a três objetivos fundamentais, que são, por ordem decrescente de importância:

1. A proteção das vidas dos ocupantes do edifício, bem como dos bombeiros que nele tenham de atuar em caso de sinistro;

2. A proteção dos bens existentes no edifício e das atividades que se desenvolvem no mesmo; A proteção do próprio edifício contra danos de incêndios que possam se deflagrar nele ou em edifícios vizinhos.

3. A segurança em caso de incêndio depende, principalmente, das condições de evacuação das pessoas e das condições para se evitar a propagação de fumos e gases, que são as causas principais das perdas de vidas humanas. As falhas estruturais têm importância muito menor neste aspecto, e somente tem caráter relevante quando podem ocasionar problemas para a evacuação das pessoas.

Quando um incêndio é deflagrado num edifício, a sua ação se faz sentir diretamente nos elementos estruturais que constituem o compartimento de incêndio e, indiretamente, em zonas mais ou menos afastadas deste. Toda a estrutura do edifício encontra-se sob a ação do peso próprio e sobrecargas de forma que, no início do incêndio, a mesma está submetida a um certo estado inicial de tensão e, portanto, a um determinado estado de deformação. A este estado inicial de tensão vem sobrepor-se um novo estado de tensão, resultante do aquecimento diferencial a que os elementos estruturais ficam submetidos. De fato, os vários elementos constituintes da estrutura de um edifício encontram-se mais ou menos rigidamente interligados e, quando alguns deles são mais aquecidos do que outros, as respectivas dilatações térmicas são restringidas, dando origem a um novo estado de tensão, variável no tempo, à medida que o incêndio se desenvolve. A sobreposição, deste estado de tensão com o estado de tensão inicial, dá origem a um estado de deformação, que é também variável no tempo.

Por outro lado, as propriedades mecânicas dos materiais que constituem os elementos estruturais, degradam-se com o aumento da temperatura. Isto significa, por exemplo, que um elemento sujeito a um estado de tensão que permaneça constante, poderá ter sua capacidade resistente esgotada ao fim de um certo período de tempo. A ação do incêndio não se faz sentir unicamente nos elementos diretamente sob a ação do fogo. Em certas situações, elementos relativamente afastados do compartimento de incêndio poderão ser os primeiros a entrar em colapso, em virtude do estado de tensão que as deformações de origem térmica da zona diretamente aquecida impõe ao resto da estrutura.

As medidas de segurança e proteção contra incêndio podem se classificar em ativas e passivas. As medidas ativas prevêem a existência de meios adequados à salvação das pessoas, começando pelo próprio projeto arquitetônico (corredores e escadas amplas, zonas
limpas de fumos, etc.). Estas medidas também visam reduzir a probabilidade de ocorrência de incêndios severos, através da atuação em suas causas acidentais e da detecção de focos e limitações das possibilidades de propagação.

As medidas de proteção passivas visam reduzir a probabilidade de colapso estruturas sempre que ocorra um incêndio severo. Esta probabilidade depende da resistência ao fogo, a qual compreende três aspectos, ou seja, a capacidade resistente da estrutura, a sua integridade perante ao fogo e a sua capacidade de isolamento térmico e que devem ser observados para os vários elementos da construção. A capacidade resistente da estrututura vai depender fortemente do comportamento do material estrutural utilizado, ou seja, do grau de variação de suas propriedades físicas e mecânicas com a temperatura. É fato bem conhecido que os aços estruturais (assim como outros materiais) sofrem reduções progressivas em sua resistência mecânica quando submetidos a condições de trabalho em temperaturas superiores à ambiente. Neste sentido, a utilização na construção metálica, de aços menos sensíveis às altas temperaturas ou de mecanismos adequados, por exemplo, utilização de películas protetoras nos elementos estruturais, para a melhoria de sua capacidade de isolamento térmico, também constituem medidas de proteção passiva.

Quando os elementos estruturais principais de uma construção em aço são expostos a altas temperaturas, durante condições típicas de um incêndio, os mesmos podem ter a sua resistência mecânica reduzida a ponto de levar toda ou parte da construção a um colapso.
Estudos relativos à resistência ao fogo de construções metálicas iniciaram-se devido ao colapso de muitas edificações feitas com ferro fundido, durante o famoso incêndio em Chicago em 1871, no qual cerca de 17.000 prédios foram destruídos total ou parcialmente. Uma das grandes razões para a facilidade com que os prédios foram destruídos pelo incêndio foi que o ferro fundido, ao contrário do aço, contém maiores teores de carbono e, uma vez aquecido à temperaturas altas o suficiente e resfriado por água durante operações de combate ao fogo, exibe, com freqüência, trincas e fissuras.

As construções metálicas atuais em aço não são tão facilmente destruídas pelo fogo, entretanto, um dos pontos mais importantes nos projetos de construção civil é reduzir o risco de incêndio e, caso estes ocorram, aumentar o tempo de início de deformação da estrutura, conferindo, assim, maior segurança a estas construções [8]. Por isso, a legislação para construção civil de vários países estabelece exigências mínimas de resistência ao fogo para os componentes estruturais. Estas normas de segurança contra incêndios, em geral, levam em consideração uma temperatura crítica na qual o aço perde uma proporção significativa de sua resistência mecânica ou atinge um estado limite de deformações ou de tensões, ou seja, uma temperatura que represente uma condição de falha, que pode representar o colapso da estrutura. Usualmente, refere-se também a um tempo de resistência ao fogo, ou seja, ao tempo para que a temperatura crítica ou condição de falha seja alcançada.
Recentemente, foram implementadas normas Brasileira NBR 14323 e NBR 14432 relativas ao dimensionamento de estruturas de aço em incêndios e às exigências de resistência ao fogo de elementos construtivos de edificações. De acordo com estas normas, o dimensionamento em situação de incêndio envolve a verificação dos elementos estruturais e suas ligações no que se refere à estabilidade e à resistência aos esforços solicitantes em temperatura elevada, a fim de se evitar o colapso da estrutura durante tempos de resistência ao fogo que variam de 1/2 a 2 horas, dependendo do tipo da edificação. A Figura 1 mostra os fatores de redução em temperatura elevada (relativos aos valores a 200C) previstos pela NBR 14323 (NBR, 1999) para o limite de escoamento dos aços laminados a quente (ky,), o limite de escoamento dos aços trefilados (kyo,), e o módulo de elasticidade de todos os tipos de aço (kE, ).

Nenhum comentário:

Postar um comentário